Given a triangle, find the minimum path sum from top to bottom. In each step you can only move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Follow up question:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
The solution for this problem can be solved in 2 ways:
1. Top Down approach
2. Bottom Up approach
Detailed explanation on how the code works, is given step by step in the solution code.
/*
* File : triangle.cpp
*/
#include<iostream>
#include<vector>
using namespace std;
int top_down_solution(vector<vector<int>> &triangle)
{
//take a result vector of size of triangle and initialize with INT_MAX
vector<int> result(triangle.size(), INT_MAX);
//initialize the first element of result with the value at triangle[0][0]
result[0] = triangle[0][0];
//now starting from the index 1, go through all the level
for (int i = 1; i < triangle.size(); i++)
{
// this for loop represents the elements inside a level
for (int j = i; j >= 1; j--)
{
result[j] = min(result[j - 1], result[j]) + triangle[i][j];
}
// as we are starting from index 1, add the elements from index 0 on all the level.
result[0] += triangle[i][0];
}
//c++ library function to get the min element inside a vector.
return *min_element(result.begin(), result.end());
}
/*
In bottom up approach,
1. Start form the row above the bottom row [size()-2].
2. Each level add the smaller number of two numbers with the current element i.e triangle[i][j].
3. Finally get to the top with the smallest sum.
*/
int bottom_up_solution(vector<vector<int>>& triangle)
{
vector<int> res = triangle.back();
for (int i = triangle.size()-2; i >= 0; i--)
for (int j = 0; j <= i; j++)
res[j] = triangle[i][j] + min(res[j], res[j+1]);
return res[0];
}
int main()
{
vector<vector<int> > triangle{ { 2 },
{ 3, 9 },
{ 1, 6, 7 } };
cout <<"The minimum path sum from top to bottom using \"top down\" approach is = "<< top_down_solution(triangle)<<endl;
cout <<"The minimum path sum from top to bottom using \"bottom up\" approach is = "<< bottom_up_solution(triangle)<<endl;
return 0;
}